JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Association between corpus callosum development on magnetic resonance imaging and diffusion tensor imaging, and neurodevelopmental outcome in neonates born very preterm.

AIM: To characterize corpus callosum development in neonates born very preterm from early in life to term-equivalent age and its relationship with neurodevelopmental outcome at 18 months corrected age.

METHOD: In a prospective cohort of 193 neonates born preterm, 24 to 32 weeks' gestation, we used magnetic resonance imaging and diffusion tensor imaging acquired early in life (n=193) and at term-equivalent age (n=159) to measure corpus callosum development: mid-sagittal area (including corpus callosum subdivisions) and length, and fractional anisotropy from the genu and splenium. We examined the association of (1) intraventricular haemorrhage (IVH) and white matter injury (WMI) severity, and (2) neurodevelopmental outcome at 18 months corrected age with corpus callosum development.

RESULTS: Severe WMI and severe IVH were strongly associated with reduced corpus callosum area (both p<0.001) and WMI with lower fractional anisotropy (p=0.002). Mild WMI predicted smaller corpus callosum area only posteriorly; mild IVH predicted smaller area throughout. Adverse motor outcome was associated with smaller corpus callosum size in the posterior subdivision (p=0.003). Abnormal cognitive outcomes were associated with lower corpus callosum fractional anisotropy (p=0.008).

INTERPRETATION: In newborn infants born very preterm, brain injury is associated with changes in simple metrics of corpus callosum development. In this population, the development of the corpus callosum, as reflected by size and microstructure, is associated with neurodevelopmental outcomes at 18 months corrected age.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app