Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The inion response revisited: evidence for a possible cerebellar contribution to vestibular-evoked potentials produced by air-conducted sound stimulation.

This study investigated the effect of eye gaze and head position on vestibular-evoked potentials (VsEPs). Head position would be expected to affect myogenic sources, and eye position is known to affect ocular myogenic responses (ocular vestibular-evoked myogenic potentials), whereas a neurogenic source should behave otherwise. Eleven healthy subjects were recruited, and VsEPs, using 72-channel EEG, were recorded at a fixed intensity above the vestibular threshold. Three eye gaze and three head positions were tested (-20°, 0°, and +20° to the horizontal). Short-latency potentials showed that in addition to the expected effect of gaze on infraocular (IO') leads, where up-gaze gives a maximum response, significant changes in amplitude were also observed in electrodes remote from the eyes and in particular, from contralateral parietal-occipital (PO) and neck (CB') leads. Short-latency potentials of similar latency were observed (p10/n17 and n10/p17, respectively). The pattern of change with gaze in the PO leads was distinct from that observed for the IO' leads. For the PO leads, the maximum response was obtained with neutral gaze, and this was also distinct from that observed for CB' electrodes, where a maximal response was observed with head flexion in the second wave but not the first. Evidence of modulation of N42 and N1 potentials with both eye and head position was also observed. Head- and eye-position manipulation thus suggests that the inion response consists of an early neurogenic component, as well as myogenic responses. The p10/n17 at PO, in particular, may be an indicator of vestibulocerebellar projections. NEW & NOTEWORTHY Loud sounds were used to activate vestibular receptors in human volunteers and the effects of head and eye position studied for short-latency responses. A potential (p10/n17) recorded in the parieto-occipital leads showed behavior not expected for a response with a myogenic origin. Source modeling suggested a possible origin from the cerebellum. It may represent a new indicator of human vestibulocerebellar function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app