Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TRPV1 Nociceptor Activity Initiates USP5/T-type Channel-Mediated Plasticity.

Cell Reports 2016 December 14
Peripheral nerve injury and tissue inflammation result in upregulation of the deubiquitinase USP5, thus causing a dysregulation of T-type calcium channel activity and increased pain sensitivity. Here, we have explored the role of afferent fiber activity in this process. Conditioning stimulation of optogenetically targeted cutaneous TRPV1 expressing nociceptors, but not that of non-nociceptive fibers, resulted in enhanced expression of USP5 in mouse dorsal root ganglia and spinal dorsal horn, along with decreased withdrawal thresholds for thermal and mechanical stimuli that abated after 24 hr. This sensitization was drastically reduced by an interfering peptide that prevented USP5-Cav3.2 association. Sensitization was relieved by pharmacological block of TRPV1 afferents, but not of myelinated neurons. In spinal cord slice recordings, we could optogenetically trigger an activity-dependent potentiation of presynaptic neurotransmission in the spinal dorsal horn that relied on Cav3.2 channel activity. This neuronal-activity-induced USP5 upregulation may underlie a protective, transient sensitization of the pain pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app