Add like
Add dislike
Add to saved papers

Implications of Charge Penetration for Heteroatom-Containing Organic Semiconductors.

The noncovalent interactions of neutral π-conjugated cores, pertinent to organic semiconductor materials, are intimately related to their charge transport properties and involve a subtle interplay of dispersion, Pauli repulsion, and electrostatic contributions. Realizing structural arrangements that are both energetically preferred and sufficiently conductive is a challenge. We tackle this problem by means of charge penetration contribution to the interaction energy, boosted in systems containing large heteroatoms (e.g., sulfur, selenium, phosphorus, silicon, and arsenic). We find that in both the model and "realistic" dimers of such heteroatom-containing cores dispersion is balanced out by the exchange and interaction energy is instead governed by substantial charge penetration. These systems also feature stronger electronic couplings compared to the dispersion-driven dimers of oligoacenes and/or the herringbone assemblies. Thus, charge penetration, enhanced in the π-conjugated cores comprising larger heteroatoms, arises as an attractive strategy toward potentially more stable and efficient organic electronic materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app