Add like
Add dislike
Add to saved papers

Molecular Origin of Electric Double-Layer Capacitance at Multilayer Graphene Edges.

Multilayer graphenes have been widely used as active materials for electric double-layer capacitors (EDLCs), where their numerous edges are demonstrated to play a crucial role in charge storage. In this work, the interfacial structure and capacitive behaviors of multilayer graphene edges with representative interlayer spacing are studied via molecular dynamics (MD) simulations. Compared with planar graphite surfaces, edges can achieve a 2-fold increase in the specific capacitance at a wider interlayer spacing of ∼5.0 Å. Unusually, the molecular origins for achieved charge storage are predominantly attributed to the structural evolutions of solvents occurring in the double layer, going beyond the traditional views of regulating the capacitance by ion adsorption/separation. Specifically, diverse ionic distributions exhibit similar screening ability and EDLC thickness, while water molecules can counterbalance the interfacial electric fields more effectively at edge site. The as-obtained findings will be instructive in designing graphene-based EDLCs for advanced capacitive performances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app