JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg 2+ Titration Analysis for HIV-1 Ribonuclease H Domain.

This article communicates our study to elucidate the molecular determinants of weak Mg2+ interaction with the ribonuclease H (RNH) domain of HIV-1 reverse transcriptase in solution. As the interaction is weak (a ligand-dissociation constant >1 mM), nonspecific Mg2+ interaction with the protein or interaction of the protein with other solutes that are present in the buffer solution can confound the observed Mg2+ -titration data. To investigate these indirect effects, we monitored changes in the chemical shifts of backbone amides of RNH by recording NMR 1 H-15 N heteronuclear single-quantum coherence spectra upon titration of Mg2+ into an RNH solution. We performed the titration under three different conditions: (1) in the absence of NaCl, (2) in the presence of 50 mM NaCl, and (3) at a constant 160 mM Cl- concentration. Careful analysis of these three sets of titration data, along with molecular dynamics simulation data of RNH with Na+ and Cl- ions, demonstrates two characteristic phenomena distinct from the specific Mg2+ interaction with the active site: (1) weak interaction of Mg2+ , as a salt, with the substrate-handle region of the protein and (2) overall apparent lower Mg2+ affinity in the absence of NaCl compared to that in the presence of 50 mM NaCl. A possible explanation may be that the titrated MgCl2 is consumed as a salt and interacts with RNH in the absence of NaCl. In addition, our data suggest that Na+ increases the kinetic rate of the specific Mg2+ interaction at the active site of RNH. Taken together, our study provides biophysical insight into the mechanism of weak metal interaction on a protein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app