Add like
Add dislike
Add to saved papers

Theoretical Investigation of Molecular and Electronic Structures of Buckminsterfullerene-Silicon Quantum Dot Systems.

Density functional theory (DFT) and density functional tight binding (DFTB) molecular dynamics (DFTB/MD) simulations of embedding and relaxation of buckminsterfullerene C60 molecules chemisorbed on (001) and (111) surfaces and inside bulk silicon lattice were performed. DFT calculations of chemisorbed fullerenes on both surfaces show that the C60 molecule deformation was very small and the C60 binding energies were roughly ∼4 eV. The charge analysis shows that the C60 molecule charges on (001) and (111) surfaces were between -2 and -3.5 electrons, respectively, that correlates well with the number of C-Si bonds linking the fullerene molecule and the silicon surface. DFT calculations of the C60 molecule inside bulk silicon confirm that the C60 molecule remains stable with the deformation energy values of between 11 and 15 eV for geometries with different C60 configurations. The formation of some C-Si bonds causes local silicon amorphization and corresponding electronic charge uptake on the embedded fullerene cages. Charge analysis confirms that a single C60 molecule can accept up to 20 excessive electrons that can be used in practice, wherein the main charge contribution is located on the fullerene's carbon atoms bonded to silicon atoms. These DFT calculations correlate well with DFTB/MD simulations of the embedding process. In this process, the C60 molecule was placed on the top of the Si(111) surface, and it was further exposed by a stream of silicon dimers, resulting in subsequent overgrowth by silicon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app