Add like
Add dislike
Add to saved papers

Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon.

Optics Letters 2016 December 16
We demonstrate an ultra-compact and low-threshold thulium microcavity laser that is monolithically integrated on a silicon chip. The integrated microlaser consists of an active thulium-doped aluminum oxide microcavity beside a passive silicon nitride bus waveguide, which enables on-chip pump-input and laser-output coupling. We observe lasing in the wavelength range of 1.8-1.9 μm under 1.6 μm resonant pumping and at varying waveguide-microcavity gap sizes. The microlaser exhibits a threshold as low as 773 μW (226 μW) and a slope efficiency as high as 24% (48%) with respect to the pump power coupled into the silicon nitride bus waveguide (microcavity). Its small footprint, minimal energy consumption, high efficiency, and silicon compatibility demonstrate that on-chip thulium lasers are promising light sources for silicon microphotonic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app