JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Stability Analysis of Printed Liquid Elbows.

In this study, a theoretical model was developed to analyze the stability of liquid elbow patterns and validated by experiments. An exemplar system of ethylene glycol continuously deposited on polyethylene terephthalate (PET) was used to study the effects of printing parameters on bulge formation near the elbow corners. In the elbow region, because of the capillary pressure differences, liquids flowed into the concave elbow corner and formed bulges easily after being printed. However, the bulge formation disappeared when the elbow angle is >90°. A simple model based on surface energy analysis was proposed to explain the bulging phenomenon and can successfully predict bulge sizes at steady state. A stability diagram was also calculated to map out the stable regimes. With the guidance of the stability diagram, stable elbow lines without any bulges can be printed with various angles by controlling the thickness of liquids. In summary, this stabilization strategy in this study is effective to maintain the fidelity of printed liquid patterns and provides useful guidelines for printed electronic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app