JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Surfactin inducing mitochondria-dependent ROS to activate MAPKs, NF-κB and inflammasomes in macrophages for adjuvant activity.

Scientific Reports 2016 December 15
Surfactin, a natural lipopeptide, can be used both as parenteral and non-parenteral adjuvant for eliciting immune response. However, the mechanisms that confer its adjuvant properties have not been fully explored. By staining with NHS-Rhodamine B labeled surfactin and Mito-Tracker Green, we found surfactin could penetrate into macrophages to bind with mitochondria, following induce ROS that could be inhibited by mitochondria-dependent ROS inhibitor. ROS enhanced p38 MAPK and JNK expression, as well their phorsphorylation, following activated NF-κB nuclear translocation in macrophages that was obviously inhibited by mitochondria-dependent ROS inhibitor. However, inhibition of ROS production only weakened p38 MAPK and JNK expression, but not their phosphorylation in macrophages. As a result, surfaction could activate NF-κB to release TNF-α by the mitochondria-dependent ROS signalling pathway. ROS also induced macrophages apoptosis to release endogenous danger signals, following activated inflammasomes of NLRP1, NLRP3, IPAF and AIM2 in vitro and only NLRP1 in vivo, as well caspase-1 and IL-1 in macrophages, which were significantly inhibited by pre-treatment with ROS inhibitors. Collectively, surfactin as a kind of non-pathogen-associated molecular patterns, modulates host innate immunity by multiple signalling pathways, including induction of mitochondria-dependent ROS, activating MAPKs and NF-κB, and inducing cell apoptosis to realease endogenous danger signals for activation of inflammasomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app