JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pleiotropic Effects of Myocardial MMP-9 Inhibition to Prevent Ventricular Arrhythmia.

Scientific Reports 2016 December 15
Observational studies have established a strong association between matrix metalloproteinase-9 (MMP-9) and ventricular arrhythmia. However, whether MMP-9 has a causal link to ventricular arrhythmia, as well as the underlying mechanism, remains unclear. Here, we investigated the mechanistic involvement of myocardial MMP-9 in the pathophysiology of ventricular arrhythmia. Increased levels of myocardial MMP-9 are linked to ventricular arrhythmia attacks after angiotensin II (Ang II) treatment. MMP-9-deficient mice were protected from ventricular arrhythmia. Increased expressions of protein kinase A (PKA) and ryanodine receptor phosphorylation at serine 2808 (pS2808) were correlated with inducible ventricular arrhythmia. MMP-9 deficiency consistently prevented PKA and pS2808 increases after Ang II treatment and reduced ventricular arrhythmia. Calcium dynamics were examined via confocal imaging in isolated murine cardiomyocytes. MMP-9 inhibition prevents calcium leakage from the sarcoplasmic reticulum and reduces arrhythmia-like irregular calcium transients via protein kinase A and ryanodine receptor phosphorylation. Human induced pluripotent stem cell-derived cardiomyocytes similarly show that MMP-9 inhibition prevents abnormal calcium leakage. Myocardial MMP-9 inhibition prevents ventricular arrhythmia through pleiotropic effects, including the modulation of calcium homeostasis and reduced calcium leakage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app