JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Chemoattractant concentration-dependent tuning of ERK signaling dynamics in migrating neutrophils.

Science Signaling 2016 December 14
The directed migration (chemotaxis) of neutrophils toward the bacterial peptide N-formyl-Met-Leu-Phe (fMLP) is a crucial process in immune defense against invading bacteria. While navigating through a gradient of increasing concentrations of fMLP, neutrophils and neutrophil-like HL-60 cells switch from exhibiting directional migration at low fMLP concentrations to exhibiting circuitous migration at high fMLP concentrations. The extracellular signal-regulated kinase (ERK) pathway is implicated in balancing this fMLP concentration-dependent switch in migration modes. We investigated the role and regulation of ERK signaling through single-cell analysis of neutrophil migration in response to different fMLP concentrations over time. We found that ERK exhibited gradated, rather than all-or-none, responses to fMLP concentration. Maximal ERK activation occurred in response to about 100 nM fMLP, and ERK inactivation was promoted by p38. Furthermore, we found that directional migration of neutrophils reached a maximal extent at about 100 nM fMLP and that ERK, but not p38, was required for neutrophil migration. Thus, our data suggest that, in chemotactic neutrophils responding to fMLP, ERK displays gradated activation and p38-dependent inhibition and that these ERK dynamics promote neutrophil migration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app