JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ultrafast, Polarized, Single-Photon Emission from m-Plane InGaN Quantum Dots on GaN Nanowires.

Nano Letters 2016 December 15
We demonstrate single-photon emission from self-assembled m-plane InGaN quantum dots (QDs) embedded on the side-walls of GaN nanowires. A combination of electron microscopy, cathodoluminescence, time-resolved microphotoluminescence (μPL), and photon autocorrelation experiments give a thorough evaluation of the QD structural and optical properties. The QD exhibits antibunched emission up to 100 K, with a measured autocorrelation function of g(2) (0) = 0.28(0.03) at 5 K. Studies on a statistically significant number of QDs show that these m-plane QDs exhibit very fast radiative lifetimes (260 ± 55 ps) suggesting smaller internal fields than any of the previously reported c-plane and a-plane QDs. Moreover, the observed single photons are almost completely linearly polarized aligned perpendicular to the crystallographic c-axis with a degree of linear polarization of 0.84 ± 0.12. Such InGaN QDs incorporated in a nanowire system meet many of the requirements for implementation into quantum information systems and could potentially open the door to wholly new device concepts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app