Add like
Add dislike
Add to saved papers

Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance.

Flexible energy-storage devices based on supercapacitors rely largely on the scrupulous design of flexible electrodes with both good electrochemical performance and high mechanical properties. Here, nitrogen-doped carbon nanofiber networks/reduced graphene oxide/bacterial cellulose (N-CNFs/RGO/BC) freestanding paper is first designed as a high-performance, mechanically tough, and bendable electrode for a supercapacitor. The BC is exploited as both a supporting substrate for a large mass loading of 8 mg cm-2 and a biomass precursor for N-CNFs by pyrolysis. The one-step carbonization treatment not only fabricates the nitrogen-doped three-dimensional (3D) nanostructured carbon composite materials but also forms the reduction of the GO sheets at the same time. The fabricated paper electrode exhibits an ultrahigh areal capacitance of 2106 mF cm-2 (263 F g-1 ) in a KOH electrolyte and 2544 mF cm-2 (318 F g-1 ) in a H2 SO4 electrolyte, exceptional cycling stability (∼100% retention after 20000 cycles), and excellent tensile strength (40.7 MPa). The symmetric supercapacitor shows a high areal capacitance (810 mF cm-2 in KOH and 920 mF cm-2 in H2 SO4 ) and thus delivers a high energy density (0.11 mWh cm-2 in KOH and 0.29 mWh cm-2 in H2 SO4 ) and a maximum power density (27 mW cm-2 in KOH and 37.5 mW cm-2 in H2 SO4 ). This work shows that the new procedure is a powerful and promising way to design flexible and freestanding supercapacitor electrodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app