Add like
Add dislike
Add to saved papers

Nanotextured Surface on Flexographic Printed ZnO Thin Films for Low-Cost Non-Faradaic Biosensors.

In this work, the formation of a nanotextured surface is reported on flexographic printed zinc oxide thin films which provide an excellent platform for low-cost, highly sensitive biosensing applications. The ability to produce nanotextured surfaces using a high-throughput, roll-to-roll production method directly from precursor ink without any complicated processes is commercially attractive for biosensors that are suitable for large-scale screening of diseases at low cost. The zinc oxide thin film was formed by printing a zinc acetate precursor ink solution and annealing at 300 °C. An intricate nanotexturing of the film surface was achieved through 150 °C drying process between multiple prints. These surface nanostructures were found to be in the range of 100 to 700 nm in length with a width of 58 ± 18 nm and a height of between 20 and 60 nm. Such structures significantly increase the surface area to volume ratio of the biosensing material, which is essential to high sensitivity detection of diseases. Nonfaradaic electrochemical impedance spectroscopy measurements were carried out to detect the pp65-antigen of the human cytomegalovirus using the printed device, which has a low limit of detection of 5 pg/mL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app