Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Engineering the Protein Corona of a Synthetic Polymer Nanoparticle for Broad-Spectrum Sequestration and Neutralization of Venomous Biomacromolecules.

Biochemical diversity of venom extracts often occurs within a small number of shared protein families. Developing a sequestrant capable of broad-spectrum neutralization across various protein isoforms within these protein families is a necessary step in creating broad-spectrum antivenom. Using directed synthetic evolution to optimize a nanoparticle (NP) formulation capable of sequestering and neutralizing venomous phospholipase A2 (PLA2 ), we demonstrate that broad-spectrum neutralization and sequestration of venomous biomacromolecules is possible via a single optimized NP formulation. Furthermore, this optimized NP showed selectivity for venomous PLA2 over abundant serum proteins, was not cytotoxic, and showed substantially long dissociation rates from PLA2 . These findings suggest that it may show efficacy as an in vivo venom sequestrant and may serve as a generalized lipid-mediated toxin sequestrant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app