Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Drosophila miR-956 suppression modulates Ectoderm-expressed 4 and inhibits viral replication.

Virology 2017 Februrary
Small non-coding microRNAs (miRNAs) can modulate the outcome of virus infection. Here we explore the role of miRNAs in insect-virus interactions, in vivo, using the natural Drosophila melanogaster-Drosophila C virus (DCV) model system. Comparison of the miRNA expression profiles in DCV-infected and uninfected flies showed altered miRNA levels due to DCV infection, with the largest change in abundance observed for miR-956-3p. Knockout of miR-956 resulted to delayed DCV-induced mortality and decreased viral accumulation compared to wild-type flies. A screen of 84 putative miR-956-3p target genes identified regulation of Ectoderm-expressed 4 (Ect4) in miR-956 knockout flies and, separately, DCV infection. In Ect4 knockdown flies DCV-induced mortality occurred more quickly and virus accumulation was increased. Taken together, results suggest that the host-protective and antiviral consequences of miR-956 suppression during in vivo infection of D. melanogaster with its natural pathogen DCV is conferred through miR-956-3p induction of its target Ect4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app