Add like
Add dislike
Add to saved papers

Phase calibration unwrapping algorithm for phase data corrupted by strong decorrelation speckle noise.

Optics Express 2016 December 13
Robust phase unwrapping in the presence of high noise remains an open issue. Especially, when both noise and fringe densities are high, pre-filtering may lead to phase dislocations and smoothing that complicate even more unwrapping. In this paper an approach to deal with high noise and to unwrap successfully phase data is proposed. Taking into account influence of noise in wrapped data, a calibration method of the 1st order spatial phase derivative is proposed and an iterative approach is presented. We demonstrate that the proposed method is able to process holographic phase data corrupted by non-Gaussian speckle decorrelation noise. The algorithm is validated by realistic numerical simulations in which the fringe density and noise standard deviation is progressively increased. Comparison with other established algorithms shows that the proposed algorithm exhibits better accuracy and shorter computation time, whereas others may fail to unwrap. The proposed algorithm is applied to phase data from digital holographic metrology and the unwrapped results demonstrate its practical effectiveness. The realistic simulations and experiments demonstrate that the proposed unwrapping algorithm is robust and fast in the presence of strong speckle decorrelation noise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app