Add like
Add dislike
Add to saved papers

Thermography and machine learning techniques for tomato freshness prediction.

Applied Optics 2016 December 2
The United States and China are the world's leading tomato producers. Tomatoes account for over $2 billion annually in farm sales in the U.S. Tomatoes also rank as the world's 8th most valuable agricultural product, valued at $58 billion dollars annually, and quality is highly prized. Nondestructive technologies, such as optical inspection and near-infrared spectrum analysis, have been developed to estimate tomato freshness (also known as grades in USDA parlance). However, determining the freshness of tomatoes is still an open problem. This research (1) illustrates the principle of theory on why thermography might be able to reveal the internal state of the tomatoes and (2) investigates the application of machine learning techniques-artificial neural networks (ANNs) and support vector machines (SVMs)-in combination with transient step heating, and thermography for freshness prediction, which refers to how soon the tomatoes will decay. Infrared images were captured at a sampling frequency of 1 Hz during 40 s of heating followed by 160 s of cooling. The temperatures of the acquired images were plotted. Regions with higher temperature differences between fresh and less fresh (rotten within three days) tomatoes of approximately uniform size and shape were used as the input nodes for ANN and SVM models. The ANN model built using heating and cooling data was relatively optimal. The overall regression coefficient was 0.99. These results suggest that a combination of infrared thermal imaging and ANN modeling methods can be used to predict tomato freshness with higher accuracy than SVM models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app