Add like
Add dislike
Add to saved papers

Rigorous coupled-wave analysis equivalent-index-slab method for analyzing 3D angular misalignment in interlayer grating couplers.

Applied Optics 2016 December 11
The interlayer waveguide grating coupling efficiencies under angular (rotational) misalignments are simulated using the 3D rigorous coupled-wave analysis (3D-RCWA) together with the RCWA equivalent-index-slab (RCWA-EIS) method. As examples of conical diffraction, rotations about the two coordinate axes, x and z, defined by the vectors [1 0 0] and [0 0 1], respectively, as well as an arbitrary axis, defined by the vector [2 2 1], are simulated for binary rectangular-groove gratings. The interlayer grating coupling efficiency is approximated by the product of the top- and bottom-grating diffraction efficiencies (DEs). It is found that the bottom-grating DEs decrease about 25% when the bottom grating is rotated ±0.1  rad (5.73°) about the z-axis. DEs slightly increase (5% to 10% depending on the grating structures) when the bottom grating is rotated ±0.1  rad about the x-axis. This is consistent with the diffraction behavior of an over-modulated grating. When the bottom grating is rotated about the vector [2 2 1], the change in DEs is asymmetric with a 100% decrease at a rotation angle -0.1  rad and a 67% decrease at a rotation angle +0.1  rad. The method is shown to be computationally efficient and numerically stable for grating structures with optimized parameters, and the resulting bottom-grating diffraction efficiencies demonstrate similar trends as those calculated by the 3D finite-difference time-domain simulations. The procedure presented can be directly used in the analysis and design of interlayer waveguide grating coupling for optical interconnects in high-density integrated electronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app