JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

High-throughput Identification of DNA-Encoded IgG Ligands that Distinguish Active and Latent Mycobacterium tuberculosis Infections.

ACS Chemical Biology 2017 January 21
The circulating antibody repertoire encodes a patient's health status and pathogen exposure history, but identifying antibodies with diagnostic potential usually requires knowledge of the antigen(s). We previously circumvented this problem by screening libraries of bead-displayed small molecules against case and control serum samples to discover "epitope surrogates" (ligands of IgGs enriched in the case sample). Here, we describe an improved version of this technology that employs DNA-encoded libraries and high-throughput FACS-based screening to discover epitope surrogates that differentiate noninfectious/latent (LTB) patients from infectious/active TB (ATB) patients, which is imperative for proper treatment selection and antibiotic stewardship. Normal control/LTB (10 patients each, NCL) and ATB (10 patients) serum pools were screened against a library (5 × 106 beads, 448 000 unique compounds) using fluorescent antihuman IgG to label hit compound beads for FACS. Deep sequencing decoded all hit structures and each hit's occurrence frequencies. ATB hits were pruned of NCL hits and prioritized for resynthesis based on occurrence and homology. Several structurally homologous families were identified and 16/21 resynthesized representative hits validated as selective ligands of ATB serum IgGs (p < 0.005). The native secreted TB protein Ag85B (though not the E. coli recombinant form) competed with one of the validated ligands for binding to antibodies, suggesting that it mimics a native Ag85B epitope. The use of DNA-encoded libraries and FACS-based screening in epitope surrogate discovery reveals thousands of potential hit structures. Distilling this list down to several consensus chemical structures yielded a diagnostic panel for ATB composed of thermally stable and economically produced small molecule ligands in place of protein antigens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app