JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Importance of L-Arginine:NO:cGMP Pathway in Tolerance to Flunitrazepam in Mice.

Neurotoxicity Research 2017 Februrary
The goal of the study was to investigate the effects of drugs modifying L-arginine:NO:cGMP pathway on the development of tolerance to flunitrazepam (FNZ)-induced motor impairment in mice. FNZ-induced motor incoordination was assessed on the 1st and 8th days of experiment, using the rotarod and chimney tests. It was found that (a) both a non-selective nitric oxide synthase (NOS) inhibitor: N G -nitro-L-arginine methyl ester (L-NAME) and an unselective neuronal NOS inhibitor: 7-nitroindazole (7-NI) inhibited the development of tolerance to the motor-impairing effects of FNZ in the rotarod and the chimney tests and (b) both a NO precursor: L-arginine and a selective inhibitor of phosphodiesterase 5 (PDE5): sildenafil did not affect the development of tolerance to FNZ-induced motor impairment in mice. Those findings provided behavioural evidence that NO could contribute an important role in the development of tolerance to FNZ in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app