Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression of KIR2DS1 by decidual natural killer cells increases their ability to control placental HCMV infection.

The combination of the activating killer cell Ig-like receptor 2DS1 (KIR2DS1) expressed by maternal decidual natural killer cells (dNK) and the presence of its ligand, the HLA-C allotype HLA-C2, expressed by fetal trophoblasts, reduces the risk of developing pregnancy complications. However, no molecular or cellular mechanism explains this genetic correlation. Here we demonstrate that KIR2DS1+ dNK acquired higher cytotoxic function than KIR2DS1- dNK when exposed to human cytomegalovirus (HCMV)-infected decidual stromal cells (DSC), particularly when DSCs express HLA-C2. Furthermore, dNK were unable to degranulate or secrete cytokines in response to HCMV-infected primary fetal extravillous trophoblasts. This emphasizes the immunological challenge to clear placental viral infections within the immune-privileged placenta. Activation of dNK through KIR2DS1/HLA-C2 interaction increases their ability to respond to placental HCMV infection and may limit subsequent virus-induced placental pathology. This mechanism is directly related to how KIR2DS1 expressed by dNK reduces development of severe pregnancy complications such as miscarriages and preterm delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app