Add like
Add dislike
Add to saved papers

Muscle and Myotendinous Tissue Properties at the Distal Tibia as Assessed by High-Resolution Peripheral Quantitative Computed Tomography.

High-resolution peripheral quantitative computed tomography (HR-pQCT) quantifies bone microstructure and density at the distal tibia where there is also a sizable amount of myotendinous (muscle and tendon) tissue (MT ); however, there is no method for the quantification of MT . This study aimed (1) to assess the feasibility of using HR-pQCT distal tibia scans to estimate MT properties using a custom algorithm, and (2) to determine the relationship between MT properties at the distal tibia and mid-leg muscle density (MD) obtained from pQCT. Postmenopausal women from the Hamilton cohort of the Canadian Multicenter Osteoporosis Study had a single-slice (2.3 ± 0.5 mm) 66% site pQCT scan measuring muscle cross-sectional area (MCSA) and MD. A standard HR-pQCT scan was acquired at the distal tibia. HR-pQCT-derived MT cross-sectional area (MT CSA) and MT density (MT D) were calculated using a custom algorithm in which thresholds (34.22-194.32 mg HA/cm3 ) identified muscle seed volumes and were iteratively expanded. Pearson and Bland-Altman plots were used to assess correlations and systematic differences between pQCT- and HR-pQCT-derived muscle properties. Among 45 women (mean age: 74.6 ± 8.5 years, body mass index: 25.9 ± 4.3 kg/m2 ), MT D was moderately correlated with mid-leg MD across the 2 modalities (r = 0.69-0.70, p < 0.01). Bland-Altman analyses revealed no evidence of directional bias for MT D-MD. HR-pQCT and pQCT measures of MT CSA and MCSA were moderately correlated (r = 0.44, p < 0.01). Bland-Altman plots for MT CSA revealed that larger MCSAs related to larger discrepancy between the distal and the mid-leg locations. This is the first study to assess the ability of HR-pQCT to measure MT size, density, and morphometry. HR-pQCT-derived MT D was moderately correlated with mid-leg MD from pQCT. This relationship suggests that distal MT may share common properties with muscle throughout the length of the leg. Future studies will assess the value of HR-pQCT-derived MT properties in the context of falls, mobility, and balance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app