JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of trehalose vitrification and artificial oocyte activation on the development competence of human immature oocytes.

Cryobiology 2017 Februrary
Sucrose and trehalose are conventional cryoprotectant additives for oocytes and embryos. Ethanol can artificially enhance activation of inseminated mature oocytes. This study aims to investigate whether artificial oocyte activation (AOA) with ethanol can promote the development competence of in vitro matured oocytes. A total of 810 human immature oocytes, obtained from 325 patients undergoing normal stimulated oocyte retrieval cycles, were in vitro maturated (IVM) either immediately after collection (Fresh group n = 291)) or after being vitrified as immature oocytes (Vitrified group n = 519). These groups were arbitrarily assigned. All fresh and vitrified oocytes which matured after a period of IVM then underwent intra-cytoplasmic sperm injection (ICSI). Half an hour following ICSI, they were either activated by 7% ethanol (AOA group) or left untreated (Non-AOA group). Fertilization, cleavage rate, blastocyst quality and aneuploidy rate were then evaluated. High-quality blastocysts were only obtained in both the fresh and vitrified groups which had undergone AOA after ICSI. Trehalose vitrification slightly, but not significantly, increased the formation rates of high-quality embryos (21.7% VS 15.4%, P > 0.05) and blastocysts (15.7% VS 7.69%, P > 0.05)) when compared with sucrose vitrification. Aneuploidy was observed in 12 of 24 (50%) of the AOA derived high quality blastocysts. High-quality blastocysts only developed from fresh or vitrified immature oocytes if the ICSI was followed by AOA. This information may be important for human immature oocytes commonly retrieved in normal stimulation cycles and may be particularly important for certain patient groups, such as cancer patients. AOA with an appropriate concentration of ethanol can enhance the developmental competence of embryos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app