JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hoxa1 and Hoxb1 are required for pharyngeal arch artery development.

Hox transcription factors play critical roles during early vertebrate development. Previous studies have revealed an overlapping function of Hoxa1 and Hoxb1 during specification of the rhombomeres from which neural crest cells emerge. A recent study on Hoxa1 mutant mice documented its function during cardiovascular development, however, the role of Hoxb1 is still unclear. Here we show using single and compound Hoxa1;Hoxb1 mutant embryos that reduction of Hoxa1 gene dosage in Hoxb1-null genetic background is sufficient to result in abnormal pharyngeal aortic arch (PAA) development and subsequently in great artery defects. Endothelial cells in the 4th PAAs of compound mutant differentiate normally whereas vascular smooth muscle cells of the vessels are absent in the defective PAAs. The importance of Hoxa1 and Hoxb1, and their interaction during specification of cardiac NCCs is demonstrated. Together, our data reveal a critical role for anterior Hox genes during PAA development, providing new mechanistic insights into the etiology of congenital heart defects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app