Journal Article
Review
Add like
Add dislike
Add to saved papers

Technologies for Prolonging Cardiac Implantable Electronic Device Longevity.

Prolonged longevity of cardiac implantable electronic devices (CIEDs) is needed not only as a passive response to match the prolonging life expectancy of patient recipients, but will also actively prolong their life expectancy by avoiding/deferring the risks (and costs) associated with device replacement. CIEDs are still exclusively powered by nonrechargeable primary batteries, and energy exhaustion is the dominant and an inevitable cause of device replacement. The longevity of a CIED is thus determined by the attrition rate of its finite energy reserve. The energy available from a battery depends on its capacity (total amount of electric charge), chemistry (anode, cathode, and electrolyte), and internal architecture (stacked plate, folded plate, and spiral wound). The energy uses of a CIED vary and include a background current for running electronic circuitry, periodic radiofrequency telemetry, high-voltage capacitor reformation, constant ventricular pacing, and sporadic shocks for the cardiac resynchronization therapy defibrillators. The energy use by a CIED is primarily determined by the patient recipient's clinical needs, but the energy stored in the device battery is entirely under the manufacturer's control. A larger battery capacity generally results in a longer-lasting device, but improved battery chemistry and architecture may allow more space-efficient designs. Armed with the necessary technical knowledge, healthcare professionals and purchasers will be empowered to make judicious selection on device models and maximize the utilization of all their energy-saving features, to prolong device longevity for the benefits of their patients and healthcare systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app