Add like
Add dislike
Add to saved papers

Heterogeneous nano-Fe/Ca/CaO catalytic ozonation for selective surface hydrophilization of plastics containing brominated and chlorinated flame retardants (B/CFRs): separation from automobile shredder residue by froth flotation.

One method of weakening the inherently hydrophobic surface of plastics relevant to flotation separation is heterogeneous nano-Fe/Ca/CaO catalytic ozonation. Nano-Fe/Ca/CaO-catalyzed ozonation for 15 min efficiently decreases the surface hydrophobicity of brominated and chlorinated flame retardant (B/CFR)-containing plastics (such as acrylonitrile-butadienestyrene (ABS), high-impact polystyrene (HIPS), and polyvinyl chloride (PVC)) in automobile shredder residue (ASR) to such an extent that their flotation ability is entirely depressed. Such a hydrophilization treatment also stimulates the ABS, HIPS, and PVC surface roughness, wetting of the surface, and the thermodynamic equilibrium conditions at the surface and ultimately changes surface polarity. SEM-EDS, AFM, and XPS analyses of the PVC and ABS surfaces demonstrated a marked decrease in [Cl/Br] and a significant increase in the number of hydrophilic groups, such as C-O, C=O, and (C=O)-O. Under froth flotation conditions at 50 rpm, about 99.5 % of ABS and 99.5 % of HIPS in ASR samples settled out, resulting in a purity of 98 and 98.5 % for ABS and HIPS in ASR samples, respectively. Furthermore, at 150 rpm, we also obtained 100 % PVC separation in the settled fraction, with 98 % purity in ASR. Total recovery of non-B/CFR-containing plastics reached nearly 100 % in the floating fraction. The amount of nano-Fe/Ca/CaO reagent employed during ozonation is very small, and additional removal of surface contaminants from the recycled ASR plastic surfaces by ozonation makes the developed process simpler, greener, and more effective.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app