JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effects of 2 weeks of interval vs continuous walking training on glycaemic control and whole-body oxidative stress in individuals with type 2 diabetes: a controlled, randomised, crossover trial.

Diabetologia 2017 March
AIMS/HYPOTHESIS: The aim of this study was to evaluate the effects of oxygen consumption-matched short-term interval walking training (IWT) vs continuous walking training (CWT) on glycaemic control, including glycaemic variability, in individuals with type 2 diabetes. We also assessed whether any training-induced improvements in glycaemic control were associated with systemic oxidative stress levels.

METHODS: Participants (n = 14) with type 2 diabetes completed a crossover trial using three interventions (control intervention [CON], CWT and IWT), each lasting 2 weeks. These were performed in a randomised order (computerised generated randomisation) and separated by washout periods of 4 or 8 weeks after CON or training interventions, respectively. Training included ten supervised treadmill sessions, lasting 60 min/session, and was performed at the research facility. CWT was performed at moderate walking speed (75.6% ± 2.5% of walking peak oxygen consumption [[Formula: see text]]), while IWT was performed as alternating 3 min repetitions at slow (58.9% ± 2.0% [Formula: see text]) and fast (90.0% ± 3.6% [Formula: see text]) walking speed. Before and after each intervention, the following was assessed: 24 h continuous glucose monitoring (CGM) and urinary free 8-iso prostaglandin F2α (8-iso PGF2α ; a marker for oxidative stress), physical fitness and body composition. Neither participants nor assessors were blinded to the interventions.

RESULTS: No intervention-induced changes were seen in physical fitness or body composition. Compared with baseline, IWT reduced mean glucose levels non-significantly (-0.7 ± 0.3 mmol/l, p = 0.08) and significantly reduced maximum glucose levels (-1.8 ± 0.5 mmol/l, p = 0.04) and mean amplitude of glycaemic excursions (MAGE; -1.7 ± 0.4 mmol/l, p = 0.02), whereas no significant within-group changes were seen with CON or CWT. Although 8-iso PGF2α was associated with minimum glucose levels at baseline, no change in 8-iso PGF2α was seen with any intervention, nor were there any associations between changes in 8-iso PGF2α and changes in glycaemic control (p > 0.05 for all). No adverse effects were observed with any of the interventions.

CONCLUSIONS/INTERPRETATION: Short-term IWT, but not CWT, improves CGM-derived measures of glycaemic control independent of changes in physical fitness and body composition in individuals with type 2 diabetes. Systemic oxidative stress levels are unaffected by short-term walking and changes in oxidative stress levels are not associated with changes in glycaemic control.

TRIAL REGISTRATION: ClinicalTrials.gov NCT02320526 FUNDING : The Centre for Physical Activity Research (CFAS) is supported by a grant from TrygFonden. During the study period, the Centre of Inflammation and Metabolism (CIM) was supported by a grant from the Danish National Research Foundation (DNRF55). The study was further supported by grants from Diabetesforeningen, Augustinusfonden and Krista og Viggo Petersens Fond. CIM/CFAS is a member of the Danish Center for Strategic Research in Type 2 Diabetes (DD2; the Danish Council for Strategic Research, grant no. 09-067009 and 09-075724). MR-L was supported by a post-doctoral grant from the Danish Diabetes Academy supported by the Novo Nordisk Foundation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app