JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen.

Artery Research 2016 December
PURPOSE OF REVIEW: Continuous wave near infrared spectroscopy (CW NIRS) provides non-invasive technology to measure relative changes in oxy- and deoxy-haemoglobin in a dynamic environment. This allows determination of local skeletal muscle O2 saturation, muscle oxygen consumption ([Formula: see text]) and blood flow. This article provides a brief overview of the use of CW NIRS to measure exercise-limiting factors in skeletal muscle.

RECENT FINDINGS: NIRS parameters that measure O2 delivery and capacity to utilise O2 in the muscle have been developed based on response to physiological interventions and exercise. NIRS has good reproducibility and agreement with gold standard techniques and can be used in clinical populations where muscle oxidative capacity or oxygen delivery (or both) are impaired. CW NIRS has limitations including: the unknown contribution of myoglobin to the overall signals, the impact of adipose tissue thickness, skin perfusion during exercise, and variations in skin pigmentation. These, in the main, can be circumvented through appropriate study design or measurement of absolute tissue saturation.

SUMMARY: CW NIRS can assess skeletal muscle O2 delivery and utilisation without the use of expensive or invasive procedures and is useable in large population-based samples, including older adults.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app