Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Potentiation of Amitriptyline Anti-Hyperalgesic-Like Action By Astroglial Connexin 43 Inhibition in Neuropathic Rats.

Scientific Reports 2016 December 13
Antidepressants, prescribed as first line treatment of neuropathic pain, have a limited efficacy and poorly tolerated side effects. Because recent studies pointed out the implication of astroglial connexins (Cx) in both neuropathic pain and antidepressive treatment, we investigated whether their blockade by mefloquine could modulate the action of the tricyclic antidepressant amitriptyline. Using primary cultures, we found that both mefloquine and amitriptyline inhibited Cx43-containing gap junctions, and that the drug combination acted synergically. We then investigated whether mefloquine could enhance amitriptyline efficacy in a preclinical model of neuropathic pain. Sprague-Dawley rats that underwent chronic unilateral constriction injury (CCI) to the sciatic nerve (SN) were treated with either amitriptyline, mefloquine or the combination of both drugs. Whereas acute treatments were ineffective, chronic administration of amitriptyline reduced CCI-SN-induced hyperalgesia-like behavior, and this effect was markedly enhanced by co-administration of mefloquine, which was inactive on its own. No pharmacokinetic interactions between both drugs were observed and CCI-SN-induced neuroinflammatory and glial activation markers remained unaffected by these treatments in dorsal root ganglia and spinal cord. Mechanisms downstream of CCI-SN-induced neuroinflammation and glial activation might therefore be targeted. Connexin inhibition in astroglia could represent a promising approach towards improving neuropathic pain therapy by antidepressants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app