JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VALIDATION STUDIES
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

A Novel Bioreactor System for the Assessment of Endothelialization on Deformable Surfaces.

Scientific Reports 2016 December 13
The generation of a living protective layer at the luminal surface of cardiovascular devices, composed of an autologous functional endothelium, represents the ideal solution to life-threatening, implant-related complications in cardiovascular patients. The initial evaluation of engineering strategies fostering endothelial cell adhesion and proliferation as well as the long-term tissue homeostasis requires in vitro testing in environmental model systems able to recapitulate the hemodynamic conditions experienced at the blood-to-device interface of implants as well as the substrate deformation. Here, we introduce the design and validation of a novel bioreactor system which enables the long-term conditioning of human endothelial cells interacting with artificial materials under dynamic combinations of flow-generated wall shear stress and wall deformation. The wall shear stress and wall deformation values obtained encompass both the physiological and supraphysiological range. They are determined through separate actuation systems which are controlled based on validated computational models. In addition, we demonstrate the good optical conductivity of the system permitting online monitoring of cell activities through live-cell imaging as well as standard biochemical post-processing. Altogether, the bioreactor system defines an unprecedented testing hub for potential strategies toward the endothelialization or re-endothelialization of target substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app