JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The high osmotic response and cell wall integrity pathways cooperate to regulate morphology, microsclerotia development, and virulence in Metarhizium rileyi.

Scientific Reports 2016 December 13
Microsclerotia (MS) formation was successfully induced in Metarhizium rileyi under changing liquid culture conditions. Mitogen-activated protein kinases (MAPKs) play important roles in fungal development and in coordinating many stress responses. To investigate how M. rileyi transduces growth stress and regulates MS differentiation, we characterized the roles of two MAPKs, Hog1- and Slt2-type orthologues, in M. rileyi. Compared with the wild-type strain, the deletion mutants of Mrhog1 (ΔMrhog1) and Mrslt2 (ΔMrslt2) delayed germination and vegetative growth, displayed sensitivities to various stress, and produced morphologically abnormal clones. The ΔMrhog1 and ΔMrslt2 mutants significantly reduced conidial (42-99%) and MS (96-99%) yields. A transcriptional analysis showed that the two MAPKs regulate MS development in a cooperative manner. Insect bioassays revealed that ΔMrhog1 and ΔMrslt2 had decreased virulence levels in topical (36-56%) and injection (78-93%) bioassays. Our results confirmed the roles of MrHog1 and MrSlt2 in sensing growth-related stress and in regulating MS differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app