JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Autophagy inhibitors chloroquine and LY294002 enhance temozolomide cytotoxicity on cutaneous melanoma cell lines in vitro.

Patients with metastatic melanoma are difficult to treat and have a very poor prognosis because of high resistance to therapy. Recent evidence indicates that tumors could overcome death through autophagy, a survival mechanism, which cancer cells use under lack of energy and nutrient deprivation. Melanoma cells have different sensitivity to temozolomide (TMZ) treatment. In this study, we showed that the combination of autophagy inhibitors chloroquine or LY294002 and TMZ induced enhanced cytotoxicity of alkylating agents on human melanoma cell lines. All assays were performed on patient-derived melanoma cell lines. The effectiveness of the combined treatment of TMZ and autophagy inhibitors was determined using an MTT assay. Next, we analyzed the expression mRNA level of Beclin 1, LC3B, and p62/STSQM1 and the relative expression of LC3B protein under combined treatment. Autophagic flux was determined by analysis of colocalization of Lysotracker Red and LC3B puncta. Apoptosis was measured by Annexin V/PI staining. Cell cycle analyses were carried out by flow cytometry. We showed that autophagy inhibition could enhance melanoma cell death combined with TMZ therapy. Chloroquine synergistically enhanced the TMZ-induced growth arrest and increased the G0/G1 population in Mel Z and Mel IL cell lines, but not Mel MTP. The expression analysis showed that autophagy involvement in TMZ enhanced cytotoxicity. Furthermore, LY294002, an early-stage autophagy, and PI3K inhibitor were found to exert similar effects. Both chloroquine and LY294002 improved the cytotoxic effect of TMZ treatment, making this combination applicable as a potent antitumor treatment for metastatic melanoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app