Add like
Add dislike
Add to saved papers

ScVO 4 under non-hydrostatic compression: a new metastable polymorph.

The high-pressure (HP) behaviour of scandium vanadate (ScVO4 ) is investigated under non-hydrostatic compression. The compound is studied by means of synchrotron-based powder x-ray diffraction (XRD) and optical-absorption techniques. The occurrence of a non-reversible phase transition is detected. The transition is from the zircon structure to the fergusonite-type structure and takes place around 6 GPa with nearly 10% volume discontinuity. XRD measurements on the pressure cycled sample confirm for the first time that the fergusonite-type ScVO4 can be recovered as the metastable phase at ambient conditions. Raman spectroscopic measurements verify the metastable phase to be of a fergusonite-type phase. Theoretical calculations also corroborate the experimental findings. The fergusonite phase is found to be stiffer than the ambient-pressure zircon phase, as indicated by the observed experimental and theoretical bulk moduli. The optical properties and lattice-dynamics calculation of the fergusonite ScVO4 are discussed. At ambient pressure the band gap of the zircon (fergusonite)-type ScVO4 is 2.75 eV (2.3 eV). This fact suggests that the novel metastable polymorph of ScVO4 can have applications in green technologies; for instance, it can be used as photocatalytic material for hydrogen production by water splitting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app