Add like
Add dislike
Add to saved papers

Myocardial T1 Measurement Predicts Beneficial LV Remodeling After Long-Term Heart Failure Therapy.

BACKGROUND: The myocardial longitudinal relaxation time (T1) on cardiac magnetic resonance imaging (CMR) can quantify myocardial fibrosis in the presence or absence of visually detectable late gadolinium (Gd) enhancement (LGE). Mineralocorticoid receptor antagonist (MRA) treatment produces beneficial remodeling in nonischemic dilated cardiomyopathy (NIDCM). We assessed the hypothesis that interstitial myocardial fibrosis measured with the use of CMR predicts left ventricular (LV) beneficial remodeling in NIDCM after heart failure (HF) treatment including MRAs.

METHODS AND RESULTS: Twelve patients with NIDCM, on stable beta-blocker and angiotensin-converting enzyme inhibitor/angiotensin receptor-blocking therapy, were studied before and after 6-29 months of treatment with MRAs, by means of CMR assessment of LV structure, function, and T1 from standard Look-Locker sequences (T1LL ). All patients had depressed cardiac function, dilated left ventricles, and no visual LGE. After adding MRA to HF treatment, the LV ejection fraction increased and the LV end-systolic volume index (LV end-systolic volume/m2 ) decreased in all patients (P < .0001). This this was inversely proportional to the baseline myocardial T1LL (r = -0.65; P = .02).

CONCLUSION: Myocardial T1LL , in the absence of visually detectable LGE, was quantitatively related to the degree of beneficial LV remodeling achieved in response to adding MRA to a HF regimen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app