Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA.

Molecular Cell 2016 December 16
The discovery and study of toxin-antitoxin (TA) systems helps us advance our understanding of the strategies prokaryotes employ to regulate cellular processes related to the general stress response, such as defense against phages, growth control, biofilm formation, persistence, and programmed cell death. Here we identify and characterize a TA system found in various bacteria, including the global pathogen Mycobacterium tuberculosis. The toxin of the system (DarT) is a domain of unknown function (DUF) 4433, and the antitoxin (DarG) a macrodomain protein. We demonstrate that DarT is an enzyme that specifically modifies thymidines on single-stranded DNA in a sequence-specific manner by a nucleotide-type modification called ADP-ribosylation. We also show that this modification can be removed by DarG. Our results provide an example of reversible DNA ADP-ribosylation, and we anticipate potential therapeutic benefits by targeting this enzyme-enzyme TA system in bacterial pathogens such as M. tuberculosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app