Add like
Add dislike
Add to saved papers

Clusterin and Pycr1 alterations associate with strain and model differences in susceptibility to experimental pancreatitis.

Acute pancreatitis has several underlying etiologies, and results in consequences ranging from mild to complex multi-organ failure. The wide range of pathology suggests a genetic predisposition for progression. We compared the susceptibility to acute pancreatitis in BALB/c and FVB/N mice, coupled with proteomic analysis, in order to identify potential protein associations with pancreatitis progression.

METHODS: Pancreatitis was induced in BALB/c and FVB/N mice by administration of cerulein or feeding a choline-deficient, ethionine-supplemented (CDE) diet. Histology and changes in serum amylase were examined. Proteome profiling in cerulein-treated mice was performed using 2-dimensional differential in gel electrophoresis (2D-DIGE) followed by mass spectrometry analysis and biochemical validation.

RESULTS: Male and female FVB/N mice manifested more severe cerulein-induced pancreatitis as compared with BALB/c mice, but both strains were similarly susceptible to CDE-induced pancreatitis. Few of the 2D-DIGE alterations were validated by immunoblotting. Clusterin was markedly up-regulated after cerulein-induced pancreatitis in FVB/N but less-so in BALB/c mice. Pyrroline-5-carboxylate reductase (Pycr1), an enzyme involved in proline biosynthesis, had higher basal levels in FVB/N male and female mouse pancreata compared with BALB/c pancreata, and was relatively more resistant to degradation in FVB/N pancreata. However, serum and pancreas tissue proline levels were similar in the two strains.

CONCLUSION: FVB/N is more susceptible than BALB/c mice to cerulein-induced but not CDE-induced pancreatitis. Most of the 2D-DIGE alterations in the two strains likely relate to posttranslational modifications rather than protein level differences. Clusterin levels increase dramatically in association with pancreatitis severity, while Pycr1 is higher in FVB/N versus BALB/c pancreata basally and after induction of pancreatitis. Changes in proline metabolism may represent a novel potential genetic modifier in the context of pancreatitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app