JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Studying cyto and myeloarchitecture of the human cortex at ultra-high field with quantitative imaging: R 1 , R 2 * and magnetic susceptibility.

NeuroImage 2017 Februrary 16
In this manuscript, the use of quantitative imaging at ultra-high field is evaluated as a mean to study cyto and myelo-architecture of the cortex. The quantitative contrasts used are the longitudinal relaxation rate (R1 ), apparent transverse relaxation rate (R2* ) and quantitative susceptibility mapping (QSM). The quantitative contrasts were computed using high resolution in-vivo (0.65mm isotropic) brain data acquired at 7T. The performance of the different quantitative approaches was evaluated by visualizing the contrast between known highly myelinated primary sensory cortex regions and the neighbouring cortex. The transition from the inner layers to the outer layers (from white matter to the pial surface) of the human cortex, which is known to have varying cyto- and myelo architecture, was evaluated. The across cortex and through depth behaviour observed for the different quantitative maps was in good agreement between the different subjects, clearly allowing the differentiation between different Brodmann regions, suggesting these features could be used for individual cortical brain parcellation. While both R1 and R2 * maps decrease monotonically from the white matter to the pial surface due to the decrease of myelin and iron between these regions, magnetic susceptibility maps have a more complex behaviour reflecting its opposing sensitivity to myelin and iron concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app