Add like
Add dislike
Add to saved papers

Tapping into Salmonella typhimurium LT2 genome in a quest to explore its therapeutic arsenal: A metabolic network modeling approach.

S. typhimurium, the classical broad-host-range serovar is a widely distributed cause of food-borne illness. Escalating antibiotic resistance and potential of conjugal transmission to other pathogens attributable to its broad spectrum host specificities have aided S. typhimurium to emerge as a global health threat. To keep pace with ever evolving bacterial defenses, there is dire need to restock the antibiotic pipeline. Genome scale metabolic reconstructions present immense possibilities to decipher physiological properties of an organism using constraint-based methods The systems-level approaches of genome scale metabolic networks interrogation open up new avenues of drug target identification against deadly infectious diseases. We performed flux balance analysis and minimization of metabolic adjustment studies of genome scale reconstruction model of S. typhimurium targeted at identifying large number of metabolites with a potential to be utilized as therapeutic drug targets. These constraint based approaches initially predict a set of genes indispensable to bacterial survival by performing gene knockout studies which are then prioritized through a multistep process. Metabolites involved in l-rhamnose biosynthesis, peptidoglycan biosynthesis, fatty acid biosynthesis, and folate biosynthesis pathways were prioritized as candidate drug targets. This study provides a general therapeutic approach which can be effectively applied to other pathogens as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app