JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Hippocampal structure predicts cortical indices of reactivation of related items.

Neuropsychologia 2017 January 28
One of the key components of relational memory is the ability to bind together the constituent elements of a memory experience, and this ability is thought to be supported by the hippocampus. Previously we had shown that these relational bindings can be used to reactivate the cortical processors of an absent item in the presence of a relationally bound associate (Walker et al., 2014). Specifically, we recorded the event-related optical signal (EROS) when presenting the scene of a face-scene pair during a preview period immediately preceding a test display, and demonstrated reactivation of a face-processing cortical area (the superior temporal sulcus, STS) for scenes that had been previously paired with faces, relative to scenes that had not. Here we combined the EROS measures during the same preview paradigm with anatomical estimates of hippocampal integrity (structural MRI measures of hippocampal volume and diffusion tensor imaging measures of mean fractional anisotropy and diffusivity) to provide evidence that the hippocampus is mediating this reactivation phenomenon. The study was run in a sample of older adults aged 55-87, taking advantage of the high amount of hippocampal variability present in aging. We replicated the functional reactivation of STS during the preview period, specific to scenes previously paired with faces. Crucially, we also found that this phenomenon is correlated with structural hippocampus integrity. Both STS reactivation and hippocampal structure predicted subsequent recognition performance. These data support the theory that relational memory is sustained by an interaction between hippocampal and cortical sensory processing regions, and that these functions may be at the basis of episodic memory changes in normal aging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app