Add like
Add dislike
Add to saved papers

Opposing Activities of Aurora B Kinase and B56-PP2A Phosphatase on MKlp2 Determine Abscission Timing.

Current Biology : CB 2017 January 10
After cleavage furrow ingression during cytokinesis, nascent daughter cells remain connected by an intercellular bridge (ICB) and the midbody [1, 2]. The midbody becomes an assembly platform for ESCRT complexes that split apart the plasma membrane (PM) anchored to the ICB and complete abscission, which is the final step of cell division [3-5]. Aurora B governs abscission by regulating its timing as a checkpoint [6-10]. However, the underlying mechanisms for this process remain unknown. Here, we reveal the mechanism controlling abscission through integration of Aurora B kinase and B56-bound PP2A phosphatase activities on the kinesin motor protein MKlp2. We identify MKlp2 as an essential protein for promoting abscission, which may regulate tethering and stabilizing of the PM to the microtubule cytoskeleton at the ICB through its previously uncharacterized lipid association motif (LAM). MKlp2 recruits Aurora B to the ICB [11-15]. In turn, Aurora B phosphorylation of MKlp2 S878 in the LAM is a key inhibitory signal for abscission. Conversely, B56-PP2A promotes abscission by opposing Aurora B phosphorylation of MKlp2 S878. Strikingly, a phospho-resistant MKlp2 S878A mutant overcomes Aurora-B-mediated abscission blockade. Thus, abscission is determined by the balance of Aurora B and B56-PP2A activities on MKlp2 S878 within the LAM. Together, these findings establish a key mechanism for Aurora B regulation of abscission in mammalian cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app