Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Investigation of biomechanical response of Hoffa's fat pad and comparative characterization.

The infrapatellar adipose body (Hoffa's fat pad, IFP) is situated between the patellar tendon, the femoral condyle and the tibial plateau. The IFP consists of lobules of white adipose tissue delimited by thin connective septa. The actual structural functionality of the IFP is debated and should pertain to a cushioning role in the knee joint, providing to distribute and to damp mechanical stresses during articular activity. The present study is aimed to analyze the correlation between histological configuration and mechanical properties of the IFP, compared to other adipose tissues, partially differentiated by composition and conformation. Histological and ultrastructural methods were exploited to analyze the microscopic anatomies of IFP, knee (KSF) and abdominal (ASF) subcutaneous fat tissues. Numerical micro-models of the different tissues were developed by using histo-morphometric data, as the size of adipose lobules, the thickness of the septa and their composition. Numerical analyses made it possible to evaluate the mechanical functionality of the different fat tissues considering the characteristic loading conditions, as compressive and shear actions. The results pointed out the actual mechanical relevance of IFP and KSF, while ASF exhibited different mechanical properties. Furthermore, the contribution of connective septa and adipose lobules to compressive and shear mechanical behavior was elucidated. This preliminary investigation represents the basis for biomechanical interpretation and the definition of more refined model to be developed on the acquisition of additional histological and morphometric data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app