Add like
Add dislike
Add to saved papers

MicroRNA138 regulates keratin 17 protein expression to affect HaCaT cell proliferation and apoptosis by targeting hTERT in psoriasis vulgaris.

The purpose of this study is to explore the how microRNA-138 (miR-138) affects the expression of keratin 17 (K17) and psoriasis development. Twenty-eight skin lesions from patients with psoriasis vulgaris and twenty-four normal skin tissues from healthy controls were collected. The HaCaT cells were assigned into blank, negative control (NC), miR-138 mimic, miR-138 inhibitor, hTERT siRNA and miR-138 inhibitor+hTERT siRNA groups. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the miR-138 expression. The hTERT and K17 protein expression were testified by Western Blotting. MTT assay, flow cytometry with PI single staining and Annexin V/PI double staining were performed to detect the cell proliferation activity, cell cycle and apoptosis, respectively. Compared with the healthy skin, the expression of miR-138 decreased in the psoriatic skin, but hTERT and K17 protein expressions increased. The miR-138 mimic and hTERT siRNA groups showed significantly decreased hTERT and K17 protein expressions, inhibited cell proliferation, increased number of cells at G1 phase and elevated apoptosis rate in comparison to the rest three groups. The hTERT and K17 protein expressions in the miR-138 inhibitor group were up-regulated with promoted cell proliferation and reduced apoptosis rate as compared with the other four groups. In the miR-138 inhibitor+hTERT siRNA group, the hTERT and K17 protein expressions, cell proliferation and apoptosis were intermediate between the miR-138 inhibitor and hTERT siRNA groups. These findings indicated that the expression of miR-138 was lower in the psoriatic skin, which was negatively correlated to K17 expression. MiR-138 may regulate K17 protein expression to affect HaCaT cell proliferation and apoptosis by targeting hTERT gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app