Add like
Add dislike
Add to saved papers

Influence of Thermal Treatments on the Evolution of Conductive Paths in Carbon Nanotube-Al 2 O 3 Hybrid Reinforced Epoxy Composites.

The conductive path formed by carbon nanotubes (CNTs) in a polymer matrix is one of the most attractive topics for developing multifunctional nanocomposites. In this article, we studied the evolution of conductive paths and interactions in the interfacial regions in epoxy-based composites reinforced by an urchinlike hybrid of CNTs and alumina microparticles (μAl2 O3 ). A homogeneous dispersion of CNTs in the epoxy matrix was achieved thanks to the core-shell structures of CNTs-μAl2 O3 hybrids, resulting in the interpenetrated epoxy's cross-linking network that strongly bonds with CNTs. Furthermore, thermal treatments at different temperatures around the glass-transition temperature (Tg ) were conducted under vacuum on composites near the percolation threshold. It was found that the dielectric behavior and the Tg were shifted in spite of the constant CNT mass fraction used. This was mainly due to the fact that thermal treatment generated the adjustment of the cross-linking network of epoxy, and the distances between adjacent CNTs were reduced gradually. This study can provide insight into the evolution of conductive paths in the interfacial regions from a more straightforward perspective.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app