Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

4D Graph-Based Segmentation for Reproducible and Sensitive Choroid Quantification From Longitudinal OCT Scans.

Purpose: Longitudinal imaging is becoming more commonplace for studies of disease progression, response to treatment, and healthy maturation. Accurate and reproducible quantification methods are desirable to fully mine the wealth of data in such datasets. However, most current retinal OCT segmentation methods are cross-sectional and fail to leverage the inherent context present in longitudinal sequences of images.

Methods: We propose a novel graph-based method for segmentation of multiple three-dimensional (3D) scans over time (termed 3D + time or 4D). The usefulness of this approach in retinal imaging is illustrated in the segmentation of the choroidal surfaces from longitudinal optical coherence tomography (OCT) scans. A total of 3219 synthetic (3070) and patient (149) OCT images were segmented for validation of our approach.

Results: The results show that the proposed 4D segmentation method is significantly more reproducible (P < 0.001) than the 3D approach and is significantly more sensitive to temporal changes (P < 0.0001) achieved by the substantial increase of measurement robustness.

Conclusions: This is the first automated 4D method for jointly quantifying choroidal thickness in longitudinal OCT studies. Our method is robust to image noise and produces more reproducible choroidal thickness measurements than a sequence of independent 3D segmentations, without sacrificing sensitivity to temporal changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app