Add like
Add dislike
Add to saved papers

Influence of Biodentine® - A Dentine Substitute - On Collagen Type I Synthesis in Pulp Fibroblasts In Vitro.

Preserving a patient's own teeth-even in a difficult situation-is nowadays preferable to surgical intervention and therefore promotes development of suitable dental repair materials. Biodentine®, a mineral trioxide aggregate substitute, has been used to replace dentine in a bioactive and biocompatible manner in both the dental crown and the root. The aim of our study was to evaluate the influence of Biodentine® on pulp fibroblasts in vitro. For this study, one to five Biodentine® discs with a diameter of 5.1mm were incubated in DMEM. To obtain Biodentine® suspensions the media were collected and replaced with fresh medium every 24h for 4 days. Primary pulp cells were isolated from freshly extracted wisdom teeth of 20-23 year old patients and incubated with the Biodentine® suspensions. Proliferation, cell morphology, cell integrity and cell viability were monitored. To evaluate the effect of Biodentine® on collagen type I synthesis, the secretion of the N-terminal domain of pro-collagen type I (P1NP) and the release of transforming growth factor-β1 (TGF-β1) were quantified. None of the Biodentine® suspensions tested influenced cell morphology, proliferation or cell integrity. The cell viability varied slightly depending on the suspension used. However, the concentrations of P1NP of all pulp fibroblast cultures treated for 24h with the moderate to high Biodentine® concentration containing suspensions of day 1 were reduced to 5% of the control. Furthermore, a significant TGF-β1 reduction was observed after treatment with these suspensions. It could be shown that Biodentine® is biocompatible. However, dissolved particles of the moderate to high concentrated Biodentine® suspensions 24h after mixing induce a significant reduction of TGF-β1 release and reduce the secretion of collagen type I of primary pulp fibroblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app