Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex.

Dimensionality reduction has been applied in various brain areas to study the activity of populations of neurons. To interpret the outputs of dimensionality reduction, it is important to first understand its outputs for brain areas for which the relationship between the stimulus and neural response is well characterized. Here, we applied principal component analysis (PCA) to trial-averaged neural responses in macaque primary visual cortex (V1) to study two fundamental, population-level questions. First, we characterized how neural complexity relates to stimulus complexity, where complexity is measured using relative comparisons of dimensionality. Second, we assessed the extent to which responses to different stimuli occupy similar dimensions of the population activity space using a novel statistical method. For comparison, we performed the same dimensionality reduction analyses on the activity of a recently-proposed V1 receptive field model and a deep convolutional neural network. Our results show that the dimensionality of the population response changes systematically with alterations in the properties and complexity of the visual stimulus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app