Letter
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cell-Density Dependence of Host-Defense Peptide Activity and Selectivity in the Presence of Host Cells.

ACS Chemical Biology 2017 January 21
Host-defense peptides (HDPs) are promising compounds against multidrug-resistant microbes. In vitro, their bactericidal and toxic concentrations are significantly different, but this might be due to the use of separate assays, with different cell densities. For experiments with a single cell type, the cell-density dependence of the active concentration of the DNS-PMAP23 HDP could be predicted based on the water/cell-membrane partition equilibrium and exhibited a lower bound at low cell counts. On the basis of these data, in the simultaneous presence of both bacteria and an excess of human cells, one would expect no significant toxicity, but also inhibition of the bactericidal activity due to peptide sequestration by host cells. However, this inhibition did not take place in assays with mixed cell populations, showing that for the HDP esculentin-1a(1-21)NH2, a range of bactericidal, nontoxic concentrations exists and confirming the effective selectivity of HDPs. Mixed-cell assays might be necessary to effectively asses HDP selectivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app