Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nanoscopic Structural Investigation of Physically Cross-Linked Nanogels Formed from Self-Associating Polymers.

The detailed structure of a nanogel formed by self-association of cholesterol-bearing pullulans (CHPs) was determined by contrast variation small-angle neutron scattering. The decomposition of scattering intensities into partial scattering functions of each CHP nanogel component, i.e., pullulan, cholesterol, and the cross-term between the pullulan and the cholesterol, allows us to investigate the internal structure of the nanogel. The effective spherical radius of the skeleton formed by pullulan chains was found to be 8.1 ± 0.3 nm. In the CHP nanogel, there are about 19 cross-linking points where a cross-linking point is formed by aggregation of trimer cholesterol molecules, and the spatially inhomogeneous distribution of the cross-linking points in the nanogel can be represented by the mass fractal dimension of 2.6. The average radius of gyration of the partial chains can also be determined to be 1.7 ± 0.1 nm by analyzing the extracted cross-correlation between the cross-linker and the tethered polymer chain quantitatively, and the size agrees with the value assuming random distribution of the cross-linkers on the chains. As the result, the complex structure of the nanogels is coherently revealed at the nanoscopic level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app